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Abstract

How do children – who are undeniably productive learners
– think about their learning? Do children understand, as
adults do, that learning is a process of continuous improvement
over time? To explore children’s emerging representations of
the learning process, we created a non-verbal motor learning
paradigm where 4- to 8-year-olds predicted their own learn-
ing curve without prior experience. We found that by age 7,
children predicted improved performance over time. Younger
children, however, were overly optimistic about how well they
would do at the game and often predicted near-perfect perfor-
mance across trials. This work suggests that children’s pre-
dictions of their future learning curve become more accurate
with age, which may have implications for young children’s
learning decisions.

Keywords: motor learning; metacognitive reasoning; opti-
misim

Introduction
Children are powerful and productive learners, able to infer
abstract concepts from just a few examples (Bonawitz et al.,
2011; Griffiths, Sobel, Tenenbaum, & Gopnik, 2011; Gweon
& Schulz, 2011; Schulz, Bonawitz, & Griffiths, 2007; Tenen-
baum, Kemp, Griffiths, & Goodman, 2011; Xu & Tenen-
baum, 2007). But how do children think about their own
remarkable learning? At a very basic level, it is unknown
whether children think of learning as a process of getting bet-
ter over time. Critically, how children think about learning
could have downstream consequences for their actual learn-
ing. For instance, if a child expects to learn a difficult task
right away, then they may give up on the task prematurely
when they do not perceive immediate progress. Here we seek
to examine how children represent learning as a process of
improvement over time.

Learning can often be described with a “learning curve”
- a measure of performance over time. Work on skill learn-
ing has shown that learning curves are best fit with an ex-
ponential decay function (Luft & Buitrago, 2005; Heathcote,
Brown, & Mewhort, 2000; Krakauer, Hadjiosif, Xu, Wong,
& Haith, 2019). That is, when learning a new skill, people
usually make rapid progress early on and then their perfor-
mance plateaus (Luft & Buitrago, 2005; Mazur & Hastie,
1978). Adults seem to intuit that skill learning unfolds ex-
ponentially: When introduced to a novel motor learning task,
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adults correctly predict that a naive learner’s trial-by-trial per-
formance would follow an exponential decay function with-
out having any first-hand experience with the task (Zhang,
McDougle, & Leonard, 2022). Thus adults not only repre-
sent learning as a process, but they also correctly represent
the specific shape of certain learning curves. However, less is
known about when children start to develop an understanding
of how learning unfolds over time.

To our knowledge, only one study so far has directly
probed how children think about the concept of “learning”.
In this study, Sobel and Letourneau (2015) asked 6- to 10-
year-old children to verbally reflect on their own learning
experiences. They found that when describing what “learn-
ing” means, 6- to 10-year-olds use more process-based re-
sponses (e.g., references to sources of learning, or specific
strategies for learning) than 4- to 5-year-olds. This work sug-
gests that, by age 6, children begin to think that learning is
a process involving the transmission of information or prac-
tice. However, these results raise the question of how chil-
dren think about the learning process on a more fine-grained
level. For example, do children think, as adults do (Zhang
et al., 2022), that skill learning unfolds gradually over time
rather than instantaneously? Furthermore, given that Sobel
and Letourneau (2015) used a verbal paradigm, it is unknown
whether younger children, who have limited verbal abilities,
might show more sophistication in their thinking about learn-
ing on a non-verbal task.

Prior research suggests that children younger than 6 can
represent aspects of their learning process. For example,
20-month-olds successfully monitor their uncertainty and
selectively ask their caregiver for help when encountering
a challenge (Goupil, Romand-Monnier, & Kouider, 2016).
Preschoolers can also represent their uncertainty and use
this information to effectively guide their future exploration
(Lapidow, Killeen, & Walker, 2022; Baer & Kidd, 2022;
Ghetti, Hembacher, & Coughlin, 2013). Furthermore, when
given information about their past performance, 4- to 6-year-
olds are more likely to stick with a challenge when their per-
formance has improved over time versus stayed the same,
suggesting that children are sensitive to the rate of their past
performance (Leonard, Cordrey, Liu, & Mackey, 2022).

On the other hand, when given the opportunity to predict
future performance or learning, young children tend to be
overly optimistic. For example, even after demonstrating that



they remember their poor prior performance on a jumping
task, 4-year-olds continue to overestimate their future jump-
ing distance more than 6-year-olds (Schneider, 1998). By
age 10, children still overestimate how much they can learn
about a novel object by self-exploration, despite actually fail-
ing at the task (Richardson, Sheskin, & Keil, 2021). Addi-
tionally, school-aged children express greater degrees of op-
timism when judging how much knowledge can be learned in
just one year (Lockhart, Goddu, & Keil, 2021). Thus, chil-
dren’s overly optimistic expectations of their abilities may
prevent them from representing learning as a process of im-
provement, since they may be biased to predict instantaneous
and constant success.

Current Experiment

To better understand children’s intuitions about the learning
process, we tasked 4- to 8-year-old children to think about
their own performance over time (their “learning curve”) us-
ing a novel motor learning paradigm. We focused on 4- to
8-year-olds, a similar age range as in Sobel and Letourneau
(2015), to explore whether a simplified non-verbal paradigm
would reveal similar developmental trends in children’s in-
tuitions about the learning process. Our paradigm is unique
in that it is the first to probe children’s trial-by-trial predic-
tions of performance over time without feedback. This ap-
proach allowed us to investigate whether children’s intuitions
about their future performance could be characterized by im-
provement over time without being biased by their own per-
formance.

In our preregistered experiment (link), we introduced chil-
dren to a game in which the goal was to toss bean bags onto
a target on the floor. To make the game novel and challeng-
ing, we had children toss the bean bag with their feet (like in
hacky sack) instead of their hands. The game apparatus in-
cluded a large mat with a coordinate grid and a red target in
the center (see Figure 1a). Children made predictions about
where their first five tosses would land by physically placing
bean bags on the mat. Once placed, each bean bag stayed on
the mat to lower memory demands of tracking performance
over time. Using the grid on the mat, we recorded the coordi-
nates of each bean bag and calculated the Euclidian distance
from the bean bag to the center of the target. With this in-
formation, we were able to reconstruct each child’s precise
predicted learning curve. After children made predictions,
we let them play the game for five trials to measure their ac-
tual performance. Although prior work shows that the begin-
ning of motor skill learning curves follows a steep linear trend
(Heathcote et al., 2000; Solum, Lorås, & Pedersen, 2020), we
were unsure whether children in our task would actually im-
prove across the five trials given that testing occurred in a
busy environment on a science museum floor. However, our
key hypotheses concerned how children think about their per-
formance over time, not how they actually perform. Specif-
ically, we hypothesized that children would predict that their
performance would get better across trials (i.e., the bean bags

would get closer to the center). We also hypothesized that
younger children would predict better performance on aver-
age compared to older children due to their optimistic expec-
tations, which could result in flatter predicted learning curves.

Method
Participants. We collected a preregistered sample of 125
4- to 8-year-old children (25 children per age group, binned
by year) at two local children’s museums. Based on parental
report, 55.2% of participants were female, 42.4% were male,
and 2.4% preferred not to answer. The racial and ethnic
makeup of the participants was as follows: 49% White, 19%
Asian, 19% Hispanic/Latino, 10% multiracial, 8% Other,
5% Black or African American, 0.8% American Indian or
Alaskan, 0.8% Native Hawaiian or other Pacific Islander, and
10% preferred not to answer. An additional 16 participants
were excluded from further analyses based on preregistered
criteria: child opting out (n = 6), child’s predictions were
moved before they could be recorded (n = 5), experimenter
error (n= 2), ASD diagnosis (n= 2), and outside interference
(n = 1).

Stimuli. This experiment included an 80×85 inch gridded
mat (with 30×30 1.3-inch squares) with a red circular target
in the middle (3.9-inch radius). The canvas also contained a
larger red ring (15.6-inch radius) around the target, as well as
blue-dotted intervals across each axis (6.5 inches apart). This
experiment included five 4 × 4 inch bean bags weighing 6
ounces each, labeled with numbers 1 through 5 on both sides.

Procedure. This experiment had three phases. First, the
experimenter explained that the participant was going to play
a new game with the goal of landing bean bags in the center
of the mat (see Figure 1a). Before continuing, the partici-
pant was asked to restate the goal of the game. The experi-
menter then walked the participant to a line taped 8 feet away
from the mat’s lower edge and explained that they needed to
toss the bean bag from behind the line. However, instead of
tossing with their hand, the experimenter explained that they
needed to toss the bean bag with their foot. The experimenter
demonstrated placing the bean bag on top of their foot and
tossing the bean bag toward the participant. To gain an un-
derstanding of this tossing method, children were allowed to
make one practice toss toward an experimenter standing 2 feet
to the right of the child. The practice toss was intentionally
directed away from the mat to avoid any anchoring effect on
children’s predictions of their performance.

Next, the participant made predictions about where their
tosses would land (Figure 1b). In an attempt to limit task de-
mands and speed up testing for families visiting the children’s
museum, we only asked each participant about their first five
tosses. For each toss, the experimenter asked the participant
to close their eyes and imagine tossing the bean bag toward
the target. The experimenter asked, “Where do you think your
(first, next, last) toss will land?”. Children were prompted to
walk on the mat and place a bean bag (numbered based on
trial) down to mark each of their predictions. All five bean
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Figure 1: Schematic of bean bag toss game. (a) Children were introduced to a game where they had to stand 8 feet away from
a mat and use their feet to toss a bean bag toward the center of the mat (in red). They were asked to make predictions about
where they thought their tosses would land. (b) Children made predictions about where their first five tosses would land by
placing numbered bean bags directly on the target grid. The Euclidean distance (d) between each bean bag location and the
center of the grid was calculated using d =

√
(x1 − x2)2 +(y1 − y2)2 to reconstruct individual children’s predicted and actual

learning curves.

bags were left on the mat during this prediction phase. To see
whether children’s predicted learning curves reflect their per-
ceived task difficulty, participants answered two successive
questions about perceived difficulty, “Do you think landing
a bean bag in the center of the target with your foot is easy
or hard?” and “Do you think it is kind of easy/hard or really
easy/hard?” (coded as an ordered array, from really easy, kind
of easy, kind of hard, to really hard). The experimenter took
a photo of the predictions and cleared them off the floor.

In the last phase, the participant stood behind the colored
tape and used their foot to toss five bean bags. The experi-
menter again took a photo of the tosses and thanked the child
for participating.

Coding. The horizontal and vertical locations for the bean
bags were coded based on photos of the mat. In the case
that a bean bag landed outside the mat (5.6% of predicted
tosses and 72.2% of actual tosses), measurements were taken
by the experimenter at the time of testing using a tape mea-
sure (from the center of the bean bag to the edge of the grid).
All X,Y coordinate data were double-scored by a coder blind
to child participant age and hypotheses (note that bean bags
that landed off the mat could not be double-scored). A third
coder arbitrated discrepancies over 1 inch between the two
coders (note that the bean bags were 4 by 4 inches, much
larger than the grid units of 1.3 by 1.3 inches, and thus we
allowed discrepancies under 1 inch in measurement ). Coder
scores were highly correlated (r = .997, p < .001). Next,
the Euclidean distance was calculated based on the X- and Y-
axis locations: d =

√
(x1 − x2)2 +(y1 − y2)2. Predicted and

actual learning curves were operationalized as the minimiza-
tion of the Euclidean distance between the bean bag’s landing
location and the target center across five trials.

Results

Performance predictions
On average, children did not think their performance would
improve across five trials: A linear mixed-effects model pre-
dicting children’s predicted performance (in Euclidean dis-
tance) with trial and random effects for participant revealed
a non-significant trend effect of trial (b = −.81, p = .07).
However, as predicted, we found that age was related to
performance predictions: When age in months was added
to the model, there was a positive main effect (b = .18,
p = .002), showing that younger children predicted better
average performance (i.e., bean bags landing closer to the
center) than older children. We also found that the slope of
children’s predicted learning curves differed by age. A lin-
ear mixed-effects model predicting children’s predicted per-
formance with a trial by age interaction and random effects
for participant revealed a significant interaction (b = −.11,
p < .001; see Figure 2). Follow-up analyses within each
age bin predicting children’s predicted performance by trial
revealed that 4-year-olds thought their performance would
get worse across five trials (b = 1.18, pFDR−corrected = .02),
and 5- to 6-year-old children did not predict their perfor-
mance would significantly change across trials (b > .006,
pFDR−corrected > .16). However, 7- and 8-year-old children
predicted their performance would improve across trials (7-
year-olds: b = −2.81, pFDR−corrected = .008; 8-year-olds:
b = −3.62, pFDR−corrected = .02). Thus, our data show that
by age 7, children predict that their performance will improve
across trials.

Percieved difficulty
Children’s perceived task difficulty related to their perfor-
mance predictions. Results from a linear mixed-effects model
predicting predicted performance using children’s difficulty
judgments (4 levels) and random effects by trial, participant,
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Figure 2: Children’s average actual (blue) and predicted (in orange) bean bag toss performance across five trials by age groups.
The dashed gray line indicates the distance from the edge of the red target to the center. Error bars indicate 95% bootstrapped
CIs.

and age in months, revealed a main effect of difficulty judg-
ments: Participants who thought that the task would be “re-
ally hard” judged that their bean bags would land, on average,
farther from the target than participants who thought that the
task would be “really easy” (b = 8.75, p = .01). Children’s
task difficulty judgments also related to their predicted learn-
ing curves. A linear mixed-effects model examining the in-
teraction between trial and difficulty judgments on predicted
performance (with random effects for participant and age)
found significant interactions between trial and two levels of
difficulty judgments: “kind of hard” (b = −2.39, p = .01),
and “really hard” (b =−2.68, p = .005). Follow-up analyses
collapsing difficulty judgments into two groups and control-
ling for age found that children who judged the task as “hard”
predicted that their tosses would get closer to the center
with repeated experience (b =−1.36, pFDR−corrected = .002),
whereas children who judged the task as “easy” predicted
similar performance across trials (b =−.38, pFDR−corrected =
.27). An ordinal logistic regression predicting difficulty judg-
ments by age also revealed that older children predicted the
game was going to be harder than younger children (b = .03,
p = .017): While only 44% of four-year-olds judged the task
to be “kind of hard” or “really hard”, a majority of five-
(72%), six- (76%), seven- (70.5%) and eight-year-olds (84%)
did so, respectively.
Comparison between predicted and actual performance
On average, children did not improve at the game across tri-
als: A linear mixed-effects model predicting actual perfor-
mance with trial and age and random effects for participant
revealed a main effect of age (b = −.56, p < .001) and not

trial (b = −1.27, p = .16). Thus, older children on average
were better at the game (tossed bean bags closer to the target)
than younger children, but children’s performance did not im-
prove across trials. Furthermore, there was no significant trial
by age interaction on actual performance (b = .02, p = .74),
showing that children’s actual rate of learning did not differ
by age.

We also examined whether children were accurate at pre-
dicting the shape of their own learning across trials. A lin-
ear mixed-effects model predicting actual performance as a
function of predicted performance with random effects for
trial, participant, and age found no effect of children’s pre-
dictions on their actual performance (b = −.08, p = .46).
Compared to children’s actual performance, children’s pre-
dicted performance was overly optimistic (average predicted
toss distance M = 13.83, SD = 16.29; average actual toss
distance M = 67.22, SD = 36.13; paired t(124) = −21.30,
p < .001). Moreover, as predicted, younger children were
more optimistic about their performance across trials than
older children (Figure 3): A linear mixed-effects model pre-
dicting the difference between children’s actual and predicted
performance with trial, age, and random effects for partici-
pant revealed a significant negative effect of age (b = −.84,
p < .001) and not trial (b = −.46, p = .62). Children were
also more variable (higher standard deviation) in their ac-
tual performance compared to their predicted performance
(F(624) = 4.92, p < .001). However, children were not sen-
sitive to the overall variance in their performance: A linear
mixed-effects model predicting participants’ actual toss stan-
dard deviation as a function of their predicted standard devia-
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Figure 3: Density distribution of the difference between ac-
tual and predicted performance across five trials by age group.
The dashed line x= 0 indicates a perfect match between one’s
actual and predicted performance, whereas values less than
zero indicate underestimates, and values greater than zero in-
dicate overestimates.

tion and random effects for age revealed no effect of predicted
standard deviation (b = .14, p = .31).

Discussion
We show that by age 7, children predict that their future per-
formance on a novel motor task will improve over time. This
expectation is in line with decades of research finding that
performance steadily increases throughout the first few tri-
als of a motor task (Luft & Buitrago, 2005; Solum et al.,
2020). On the other hand, 5- and 6-year-olds predicted that
their performance would remain the same across trials, and
4-year-olds predicted that their performance would actually
worsen over time. Consistent with prior work highlighting
young children’s over-optimism (Schneider, 1998), we found
that younger children predicted better performance across tri-
als and perceived the task to be easier than older children.
However, in reality, younger children were worse at the mo-
tor learning task than older children.

In line with previous research (Sobel & Letourneau, 2015;
Sobel, Li, & Corriveau, 2007), we found that children’s rep-
resentations of learning as a process develop between the
ages of 4 and 8. In our work, we operationalized learning
as improved performance over time and showed that children
have fine-grained predictions about the shape of their learning
curve. We found that by age 7, children predicted that their
performance would linearly increase with practice. These
predictions arose without any first-hand experience with the
task, suggesting that 7- and 8-year-old children may be able to
simulate the process of learning from task features alone. Our
experiment was intentionally designed to support children’s
predictions about their performance over time: We used min-

imal verbal demands and made the task concrete and physi-
cal. However, despite past work showing 6-year-olds’ ability
to verbally describe learning using process-based responses
(Sobel & Letourneau, 2015), our behavioral task revealed that
6-year-olds do not predict improved performance over time
on a novel task. This may suggest that even though some chil-
dren can associate concepts such as “practice” with learning
by age 6, they might not yet be able to represent the learning
process on a more fine-grained level or across multiple time
points.

Contrary to our hypothesis, we did not find that 4- to
6-year-olds predict improvement over time. It is unclear
whether younger children genuinely do not think that they
will improve on novel motor tasks, or whether other fac-
tors hindered young children’s performance in this context.
There are a number of reasons to believe the latter. First, al-
though we tried to reduce task demands in our paradigm, it is
possible that our current experimental design was too cog-
nitively challenging for younger children. All participants
successfully restated the goal of the game, but younger chil-
dren may have had difficulty remembering or prioritizing this
goal when making predictions. After young children pre-
dicted “success” in the game, which they often did in their
first few predictions, they may have pursued their own ar-
bitrary goals instead of the goals imposed by the task (see
Chu & Schulz, 2020; Diggs-Galligan, Chu, Tenenbaum, &
Schulz, 2021). Indeed, some younger children placed all
their bean bags in a straight line or in each quadrant of the
target, showing a bias towards the visual features of the mat
rather than the goal of the game. Young children’s optimism,
combined with their diminished executive functions (Best &
Miller, 2010; Best, Miller, & Jones, 2009) and counterfactual
reasoning (Kominsky et al., 2021; Rafetseder, Schwitalla, &
Perner, 2013), may have also prevented them from predicting
improvement over time. For example, 4-year-olds almost al-
ways placed their first predictions near the target’s center and
often thought that the game would be “really easy”, showing
that they either could not inhibit their desired response (Wente
et al., 2020) or that their optimism blinded them from consid-
ering the necessity of practice. Our ongoing work is explor-
ing whether alternative versions of this paradigm with lower
task demands yield more sophisticated reasoning in younger
children.

A strength of our paradigm is that it is relatively non-
verbal, allowing us to assess how young, less-verbal chil-
dren intuitively think about their future performance. How-
ever, this same strength comes with a limitation: it is difficult
to infer whether children are actively applying the concept
of learning per se when predicting their performance. It is
possible that 7- and 8-year-olds think that their performance
will improve over time, but do not associate this improve-
ment with learning. We think that this is unlikely given prior
work showing that 7- and 8-year-olds describe learning with
process-based language Sobel and Letourneau (2015). It may
be more likely that 4- to 5-year-olds do not think about the



specific concept of learning in this task, as past work has
shown that younger children verbally do not associate learn-
ing with progress Sobel and Letourneau (2015). Future work
should explore specifically whether children associate task
improvement with learning, as well as how they think this
learning occurs (e.g., through passive or active acquisition).

Another limitation of our paradigm is that children did not
actually improve on the task over the first five trials. On a
range of motor tasks, adult learners often experience rapid
improvement within the first few trials (Adams, 1952; Luft
& Buitrago, 2005; Zhang et al., 2022). Furthermore, work by
Solum et al. (2020) showed that 10-year-olds and adult partic-
ipants have similar learning curves when throwing darts with
their non-dominant hand. It is possible that children in our
experiment were not fully focused when playing the game:
They may have been distracted by the museum setting (note
we tested children in an open space within the museum) or
fatigued from the first part of the procedure. With more focus
and effort, children may be able to improve at this task across
five trials. To this end, ongoing work is testing whether chil-
dren’s actual performance improves across five trials when
they do not first have to make predictions of their performance
(thereby reducing task length before play) and are given in-
centives for their accurate performance to increase motivation
and effort.

A future question concerns whether children predict dis-
tinct learning curves for different tasks. Generally, activi-
ties that are harder to master have flatter learning curves than
tasks that are easier to learn (Gottlieb & Oudeyer, 2018; Son
& Sethi, 2006). Children and adults prefer to work on tasks
with steeper learning rates (Ten, Kaushik, Oudeyer, & Got-
tlieb, 2021; Leonard et al., 2022), suggesting that they may
be sensitive to learning curves as a signal for which tasks
are tractable. However, it is unknown whether children or
even adults proactively predict that learning curves will differ
based on task difficulty. Several parameters of learning curves
may vary based on task difficulty, including starting perfor-
mance, learning rate, and final performance. As such, it is
unclear which feature(s) children might predict relate to task
difficulty. Critically, children’s predictions of these features
may have downstream consequences for their actual learning,
impacting which tasks they choose to pursue as well as which
tasks they choose to abandon. Indeed, work in adults shows
that optimistic expectations of learning help individuals per-
sist (Geers, Wellman, & Lassiter, 2009; Solberg Nes, Evans,
& Segerstrom, 2009) but hurt motivation after early setbacks,
due to embarrassment (Dai, Dietvorst, Tuckfield, Milkman, &
Schweitzer, 2018). Understanding both how children predict
different learning curves, and how their predictions relate to
their learning decisions, will help inform how we should best
intervene on children’s beliefs about learning.

Children’s daily life is marked by learning. Here we
show that children’s predictions of their future learning curve
change with age. Our results suggest that it is not until age
7 that children predict that their performance will improve

over time. In contrast, when encountering a novel and dif-
ficult task, younger children seem to infer instant and con-
stant success. A more comprehensive understanding of chil-
dren’s developing intuitions about their learning curves could
help caregivers and teachers better understand their learning
choices and develop interventions to help them overcome ob-
stacles during learning.
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